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Averages over resonances of the elements of the collision matrix are derived from i?-matrix theory for the 
general many-channel case. Of special interest are the average diagonal elements because of their relation 
to the complex phase shifts of optical models for the channels. In the absence of correlations among channel 
width amplitudes, the formula relating an average diagonal element to average resonance parameters is 
found to be the same as obtained by Thomas for the single-channel case, or when competing channels have 
small transmission factors. The evaluation of this formula with the aid of the single-particle level picture 
of Lane, Thomas, and Wigner is discussed, as well as the effect of correlations among channels which are 
indicative of direct reaction effects. 

INTRODUCTION 

IT has previously been pointed out1 that the compari­
son of average total and scattering cross-section 

data, on the one hand, with average compound nucleus 
reaction cross sections or resonance data, on the other, 
requires a knowledge of the relationship between optical-
model parameters (such as transmission coefficients) 
and average channel width to resonance spacing ratios. 
This relationship was derived in reference 1 on the basis 
of an unjustified assumption, according to which the 
contributions from all resonances outside the averaging 
interval were thrown into an unevaluated and neglected 
contribution. However, this contribution is, in fact, 
not always negligible and, further, bears a definite 
relation to the optical-model parameters. The purpose 
of the following is to obtain an improved relationship. 
The resulting expression is, in essence, identical to one 
obtained by Thomas2 employing the channel elimination 
method and assuming that the width to spacing ratios 
of the eliminated channels are small. The more general 
validity of the relation which is provided here is im­
portant, first, because it demonstrates the validity of 
the optical-model assumption regarding the independ­
ence of the average formation cross section from the 
decay processes and, secondly, because the assumption 
that all other channels have small wridth to spacing 
ratios is violated in many important applications. 

The formula obtained is explored in the light of the 
interpretation of the optical model given by Lane, 
Thomas, and Wigner,3 and the effect of direct interac­
tions is demonstrated. 

The notation employed follows that in the review 
paper by Lane and Thomas,4 to which the reader is 
referred for definitions of all unexplained notation. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 P. A. Moldauer, Phys. Rev., 123, 968 (1961). 
2 R. G. Thomas, Phys. Rev., 97, 224 (1955). 
3 A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. Rev. 98, 

693 (1955). 
4 A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 

(1958). 

THE AVERAGE COLLISION MATRIX 

In the R matrix formalism the collision matrix U is 
given by the expressions5 

U=O*1 / 2(l-RL°)-1(l-R20)*"1 / 2O ( l a) 
= Q { 1 - (L°)-1*w+*1/2(L°)""1 

XCCL^-^Rl-HL0)"1*1^}^. (lb) 
If the consideration of U and the resulting cross sections 
can be limited to an interval AE of the total energy 
of the system such that 

AE<KSc(dSc/dE)~l for all channels c, (2) 

then Eqs. (1) can be simplified by choosing the boundary 
conditions Bc for all channels to be equal to the shift 
functions 5C so that Lc°=iPc.

6 Then Eq. (lb) becomes 

U=U{2[ l - fP 1 2 RP 1 2 ] - 1 - l}Q. (3) 

We now wish to average the elements of U over an 
energy interval AE which first of all satisfies the in­
equality (2), and secondly contains many resonances 
(poles of R) 

AE»D, (4) 

where D is the average spacing of resonances. We shall 
also assume that the averages of y\c and the level spac­
ing are almost constant in AE. The average of U is 
most easily performed by a method of Thomas.2 One 
observes that the elements of U are meromorphic in 
the complex energy plane and that (with the exception 
of the ground-state pole on the real axis) all poles are 
in the lower half plane.4 Then the averages 

(UCc')ay = — / dEUcc> 
AE J AE 

(5) 

are performed by considering the vanishing integral of 
Uec' over the contour shown in Fig. 1. If 8^>D, it is 
easily seen that R is essentially constant along the 

6 E . P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947). 
Expression (lb) corrects typographic errors in Eq. (VII, 1.6b) 
of reference 4. 

6 For tabulations of Sc, PC) and Qc for neutron channels see J. E. 
Monahan, L. C. Biedenharn, and J. P. Schiffer, Argonne National 
Laboratory Report ANL-5846 (unpublished). 
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upper horizontal piece of the contour and the fluctua­
tions in R(E+iS) can be made arbitrarily small by 
making S/D sufficiently large. We shall also assume 
that AE and S can be chosen so that along any hori­
zontal line within the contour the variation in Lc° 
satisfies ALC

0/Z,C°<<1, for all c. These conditions are 
consistent with condition (4) for nucleon-induced reac­
tions in almost all medium and heavy nuclei, except 
very close to thresholds, particularly if the threshold 
channels include s-wave neutron emission. At energies 
sufficiently close to an s-wave neutron threshold that 
these conditions cannot be met, the variation of Lc is 
so severe that averages will depend on the precise energy 
interval AE which is chosen and, correspondingly, 
average cross-section measurements will depend on the 
chape of the incident flux. The interval must not, of 
course, include a threshold.7 

With these assumptions the contributions to the 
contour integral form the two vertical paths cancel 
except for a small remainder from the region of strong 
fluctuations near the real axis. The resulting AE de­
pendent contribution to (U)av, can be eliminated by 
defining the (J7CC')av a s the average over many expres­
sions (5) whose intervals AE are slightly displaced. 
Then, since there are no singularities within the contour, 
{UCC')Q,V is equal to the average along the upper hori­
zontal path. Since R is constant there, so is U and hence8 

{Uec>)„=Ucc>(E+i$). (6) 

With Eq. (2) satisfied along the upper horizontal 
path we may calculate (£7CC')av by evaluating Eq. (3) 
at E+iS. This requires the evaluation of 

R(E+;<S)=£-
y\Xy\ 

x E\—E—iS 

r (vXr)E> 
= dE'P{E')-f , (7) 

J U E'-E-i6 

where p(E) is the resonance level density at E and the 
brackets ( }E indicate an average over resonances in 
the vicinity of E. For the diagonal elements of R we 
obtain from Eq. (7) 

(7C2)E _ 
Rcc(E+iS) = tT +RC 

where 
D(E) 

Rc = dE'p(E')(y*)E-
E'-E 

(8) 

(9) 
(E ' -E) 2 +£ 2 

In order to evaluate expressions (8) and (9) we use 

7 For applications of these methods to average cross sections in 
the vicinity of thresholds see W. E. Meyerhof (to be published). 

8 The fluctuations in U(E-\-i£>) produced by small residual 
fluctuations in R(E-\-i&) are easily estimated by means of per­
turbation methods and are found to be small to the same order. 

FIG. 1. Path of inte­
gration for the averag­
ing of the elements of 
the collision matrix by 
the method of Thomas. 
The circles indicate poles 
of the collision matrix. 

the optical model for the strength function 

sc(E)=p(E)(y*)E. (10) 

Particularly convenient for this purpose is the formula­
tion of Lane, Thomas, and Wigner,3 according to which 
sc consists of a sum of contributions from single-particle 
levels at energies Ep with strengths f cp

2 and widths Wp 

so that 

se(E)= ( 1 / 2 T ) E P ^cp
2WPl{Ep-Ef+\Wn-\ (11) 

Substituting Eq. (11) into Eq. (7) one obtains, assuming 
S«WPJ 

Rcc(E+iS) = ZP {cP
2L(Ep-E)-iWpJ~i 

(EP-E) 
= iTrsc(E)+Y,p£cp

2 

(EP-E¥+WP2 
(12) 

The second term can conveniently be splitinto two parts, 
one arising from one or two nearby single-particle or 
optical-model resonances n and the other from far away 
resonances / . Then 

Rc=Re°+R; 
where 

Re 
fc/2 

/ Ef E„ 

> dE'Psp(E')tf(E') 

E'-E 

(13) 

(14) 

Here E0 is the energy of the lowest single-particle level, 
psp is the density of single-particle levels and it has been 
assumed that p3pf c

2 is constant in the vicinity of E. It 
k clear that this quantity cannot remain constant if 
Re™ is to be finite. 

The^ contribution of a nearby optical-model resonance 
n to Rc° is 

Rcn°(E) = 2irsen(EKEn-E)/Wn, (15) 

where scn is the contribution of resonance n to the 
strength function. Expression (15) is a maximum when 
\E—En\ =\Wn and then amounts to 7rscn(E). 

In order to evaluate the average collision matrix, 
we shall at first assume that 

(YXCY\C')2? = 0 for c V c , (16) 

and for all energies E. This assumption will be further 
discussed in the next section where it is shown that (16) 
implies the presence of pure compound nucleus reactions 
only. According to Eq. (7), the assumption (16) means 
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that R(E+iS) is diagonal and, hence, Eqs. (3) and (6) 
are easily evaluated with the aid of definitions (8) and 
(10) to yield 

<*7cc(£))av=0 for cVc, 

<£/cc(E))av=0c' 
1-vPcSc+iPjlc 

2 
l+TPcSc — iPjtc 

_—p+2i6c 

(17a) 

(17b) 

where dc is the complex optical-model scattering phase 
shift.9 Introducing the resonance parameter1 

(Tc) = 2ir(rc)/D=±7rPcsc, (18) 

one obtains for the transmission coefficient 

Te=l- ! (f /c ,)avI2=<r c)[( l+i(r c))2+(JP^)2]- ' . (19) 

If we assume that Rc arises only from the nearest 
optical-model resonance, then according to Eqs. (15) 
and (18) PRC reaches the maximum value of \{rc) at 
one half-wTidth from the optical-model peak and de­
creases to zero at the peak. One interesting consequence 
of this assumption is that Tc can reach its theoretical 
maximum value of unity at the optical-model peak (if 
(rc) = 4 there), but cannot be greater than 2(1+V2)~1 

= 0.828 at the half maximum (if (rc) = 2v2 there). 

COMPOUND NUCLEUS AND DIRECT REACTIONS 

The assumption (16) is clearly satisfied if at all 
energies the 7\c are randomly distributed with zero 
mean in X and if the random sequences y\c and y\c> are 
uncorrelated. These are the customary statistical as­
sumptions regarding the amplitudes of compound 
nucleus resonances,4 implying the statistical independ­
ence of resonance states and the lack of phase correla­
tions among different decay modes. Furthermore, unless 
the assumption (16) is violated for some pair of channels 
c<mdc', the matrix element RCc> = lL\(y\cy\c')(E\—E)-1 

cannot contain a part which varies smoothly with 
energy, since such a part could arise only from correlated 
contributions of distant resonances. It follows from 
Eq. (3) that also Ucc

f can only exhibit long-range corre­
lations in energy—and hence direct reaction effects—if 
Eq. (16) and hence also Eq. (17a) is violated. 

9 H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev. 
96, 448 (1954). 

To see the effect of direct reactions upon the results 
of the preceding section, we assume that Eq. (16) is 
violated only for the pair of channels c and cf and we let 
RCC'{E+iS) — (Sicc'(E) = (SiC'c{E) which is assumed to be 
calculable by a direct reaction model, while all other 
off-diagonal elements of R(E+iS) still vanish. Then 
evaluation of (U)av requires the inversion of a 2X2 
matrix for those elements involving only channels c and 
c' while all other elements remain unaffected. In par­
ticular we obtain 

<tf,e)flV=ac l-l(rc)+iPcRc-
J- c'^J'-CC1 -L C 

\-\-\M-iPc-Rc 

x \+\{rc)-iPcRc-
-t c'Uicc' •*• c 

and 
l+l(Tc>)-iPcRe 

(20) 

(ucc>)av=2iQcnc,(pcpc,y
i26icc> 

Xl(l + i(Te)-iPeRe)(l + l(Te.)-iPc,Re>) 
+iV(Rc„

2Pc]-1. (21) 

We note that in the absence of direct reactions Eq. 
(17) shows that (Ucc)av is independent of parameters 
describing events in channels c' and that the same is 
true of the connection between optical-model and reson­
ance parameters as shown by Eq. (19). As a consequence 
also, the optical-model parameters may be expected to 
be uninfluenced by channels cr. This assures, further­
more, that on the average, compound nucleus formation 
is independent of the possible modes of decay. It does 
not mean, however, that decay in any particular channel 
is on the average independent of formation (cf. refer­
ence 1). 

In the presence of direct reactions, as shown by Eq. 
(20), the relation between optical-model parameters and 
resonance parameters in channel c, involves not only 
the parameters of the direct process (Rcc/ but also the 
resonance parameters (T'), PC'RC> of the channel c'. 
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